Rounding Techniques in Approximation Algorithms

Lecture 16: Sub-Isotropic Rounding

Lecturer: Nathan Klein

1 Sub-isotropy

In the last class, we said a distribution μ over vectors was isotropic if the variance did not depend on the direction, i.e. if for all $c \in \mathbb{R}^n$ we had:

 $\mathbb{E}_{v \sim \mu}\left[\langle c,v\rangle^2\right] = \|c\|^2$

We showed this was equivalent to the covariance matrix of μ being the identity.

We care about isotropy because if we make isotropic updates, the output should obey strong concentration bounds since we never biased the distribution towards any particular direction.^{[1](#page-0-0)} However, we saw last class that achieving sub-isotropic updates is impossible if we want to maintain the invariants of iterative relaxation. Indeed, if we have $c \in W^{(k)}$ (in particular, c is in the rowspace of the matrix $W^{(k)}$), then since $v \in \text{ker}(W^{(k)})$, we will have $\langle c, v \rangle = 0$ with probability 1, $\text{so } \mathbb{E}_{v \sim \mu} \left[\langle c, v \rangle^2 \right] = 0 \neq \|c\|^2.$

But, maybe this can be fixed. In fact, notice that even randomized pipage rounding did not achieve isotropic updates. There, our updates were of the form $(-1, 1, 0, \ldots, 0)$ or $(1, -1, 0, \ldots, 0)$ (perhaps after rearranging the coordinates). These are not isotropic. In particular, clearly taking $c = (0, 0, 1, 0, \ldots, 0)$ we are again going to have the variance of $\langle c, v \rangle$ equal to 0. This should give us hope since we were nevertheless able to prove strong concentration bounds for pipage rounding.

This motivates the definition of sub-isotropic distributions. In these distributions (i) we are happy with an *upper bound* in terms of ∥*c*∥ ² and (ii) we only measure isotropy with respect to the *directions we are moving in*. In addition, we will allow some slack on this upper bound: we can have some mild correlation with certain directions.

Figure 1: Consider distributions where each vector is output with equal probability. The leftmost distribution is not isotropic, but it is sub-isotropic with $\eta = 1$. The second distribution is not isotropic and is not sub-isotropic for $\eta < 2$, as we either output (1, 1) or (-1, -1) so for $c = (1, 1)$, $\mathbb{E}\left[\langle c, v\rangle^2\right]=4$, and using that $\mathbb{E}\left[v_i^2=1\right]$ here $\sum c_i^2\mathbb{E}\left[v_i^2\right]=\|c_i\|^2=2<4.$ The third distribution is both isotropic and sub-isotropic.

Definition 1.1 ((*a*, *η*) Sub-Isotropic Distribution)**.** *Let µ be a distribution over vectors in* **R***ⁿ . We say it is* (*a*, *η*) *sub-isotropic if:*

 $¹$ At this point, the reader should treat this is a guess! It is not obvious why isotropic updates lead to concentration,</sup> and indeed it is necessary that the isotropic updates are not too large, as there are pairwise independent distributions that do not obey Chernoff bounds.

- *1.* $\mathbb{E}_{v \sim \mu}[v] = 0$ *,*
- *2. The diagonal entries of the covariance matrix U are all at most 1 and the trace is at least an,*
- *3. For all* $c \in \mathbb{R}^n$, we have

$$
\mathbb{E}_{v \sim \mu} \left[\langle c, v \rangle^2 \right] \leq \eta \sum_{i=1}^n c_i^2 \mathbb{E} \left[v_i^2 \right]
$$

We will ultimately show that sub-isotropic updates imply concentration. But for now, some things to notice, to help gain some intuition about this definition:

- 1. If $\mathbb{E}\left[v_i^2\right]$ was 1 for all *i*, i.e. the diagonals of the covariance matrix were all 1s as in the definition of isotropy, the last term would be simply *η*∥*c*∥ 2 , like an upper bound on the correlation with slack *η*. But now we allow the variance to be, say, 0 along some directions, and as mentioned we do not care about maintaining isotropy for those directions.
- 2. If the entries v_i were all independent from one another (or even pairwise independent), we would obtain $\mathbb{E}_{v \sim \mu} \left[\langle c, v \rangle^2 \right] = \sum_{i=1}^n c_i^2 \mathbb{E} \left[v_i^2 \right]$, i.e. $\eta = 1$. In a pipage rounding update, we would have $\mathbb{E}_{v \sim \mu} \left[\langle c, v \rangle^2 \right] \leq \sum_{i=1}^n c_i^2 \mathbb{E} \left[v_i^2 \right].$
- 3. The second criteria of sub-isotropy says that our distribution should not just output the 0 vector, and that it is appropriately scaled. The specific condition that the trace is at least *an* is only needed to show the running time of the algorithm is not too large.

1.1 Positive Semi-Definite Matrices

How might we construct such updates? It turns out to be enough to construct a positive semidefinite matrix with certain properties. Remember that a real symmetric matrix *U* is positive semi-definite (PSD) if any of the three equivalent conditions hold:

- 1. Its eigenvalues are all non-negative.
- 2. There exists a matrix $U^{1/2}$ such that $(U^{1/2})^T U^{1/2} = U$, i.e. if *U* has a square root.
- 3. $x^T U x \ge 0$ for all $x \in \mathbb{R}^n$.

A common piece of notation which is convenient here is we say *A* ⪯ *B* if *B* − *A* is PSD. So, sometimes $A \succeq 0$ is used to denote that *A* is PSD. In the second definition, there may be many matrices $U^{1/2}$, but there is a unique one that is also PSD which we will refer to when we use $U^{1/2}$.

A very nice fact is as follows:

Fact 1.2. Let $U \in \mathbb{R}^{n \times n}$ be a PSD matrix. Then, there exists a distribution μ with covariance matrix U.

Proof. Let $r \in \mathbb{R}^n$ be a random vector where every entry is independently equal to -1 or 1, each with probability 1/2, call this distribution *ν*. Now, consider the random process in which we sample a vector *r* and then output $U^{1/2}r$. This results in a distribution μ over vectors with $\mathbb{E}_{v \sim u}[v] = 0.$

The covariance matrix of μ is

$$
\mathbb{E}_{v \sim \mu} \left[v v^T \right] = \mathbb{E}_{r \sim v} \left[U^{1/2} r (U^{1/2} r)^T \right] = U^{1/2} \mathbb{E}_{r \sim v} \left[r r^T \right] U^{1/2} = U
$$

where we used that $\mathbb{E}_{r \sim \nu} \left[r r^T \right] = I_n$ since every diagonal is 1 with probability 1, and every off-diagonal is equally likely to be −1 or 1. \Box

Note that it is also possible to use a Gaussian instead, but [\[Ban19\]](#page-3-0) uses random ± 1 entries to help ensure the updates are bounded.

The first condition of [Definition 1.1](#page-0-1) is met by such a distribution. The second is met as long as we choose *U* so that the diagonals are at most 1 and the trace is at least *an* for whatever constant $a > 0$ is needed. The third condition looks a bit unusual, but it turns out it is also easy to put in terms of the covariance matrix:

Fact 1.3. $\mathbb{E}_{v\sim\mu}\left[\langle c,v\rangle^2\right]\leq\eta\sum_{i=1}^nc_i^2\mathbb{E}\left[v_i^2\right]$ (condition (3) of [Definition 1.1\)](#page-0-1) holds for μ with covariance *matrix U if and only if U* \preceq *η · diag(U).*

Proof. $U \leq \eta \cdot diag(U)$ is the same as saying $\eta \cdot diag(U) - U$ is PSD, or using the equivalencies above,

$$
c^T(\eta \cdot \text{diag}(U) - U)c \geq 0
$$

for all $c \in \mathbb{R}^n$. This implies $c^T U c \leq \eta \cdot c^T \text{diag}(U) c$. But, remember from last lecture,

$$
\mathbb{E}_{v \sim \mu} \left[\langle c, v \rangle^2 \right] = c^T \mathbb{E}_{v \sim \mu} \left[v v^T \right] c = c^T U c
$$

So, chaining everything together,

$$
\mathbb{E}_{v \sim \mu} \left[\langle c, v \rangle^2 \right] = c^T U c \le \eta \cdot c^T \text{diag}(U) c = \eta \sum_{i=1}^n c_i^2 \mathbb{E} \left[v_i^2 \right]
$$

as desired.

In the next class, we will prove the following theorem of Bansal and Garg [\[BG17\]](#page-3-1). By the above discussion, this theorem is sufficient to obtain (a, η) sub-isotropic updates.

Theorem 1.4. Let $W \subset \mathbb{R}^n$ be a subspace of dimension $(1 - \delta)n$. Then there is a PSD matrix $U \in \mathbb{R}^{n \times n}$ *satisfying:*

- *1.* $\langle ww^T, U \rangle = 0$ for all $w \in W$, ^{[2](#page-2-0)}
- *2. The diagonal entries are at most 1 and the trace is at least an,*
- *3. U* \preceq *η* · *diag*(*U*)*, or equivalently U η* · *diag*(*U*) *is PSD.*

The first condition implies that we stay in the kernel of *W*. This is because for any $w \in W$ it gives

$$
0 = \langle w w^T, U \rangle = \text{Tr}(w w^T U) = \text{Tr}(w^T U w) = w^T U w = ||U^{1/2} w||^2,
$$

where we used the cyclicity of trace. This implies that $U^{1/2}w$ and its transpose $w^{T}U^{1/2}$ are the all 0s vector. But now setting an update to be $U^{1/2}r$, for any $w \in W$ we obtain $w^T U^{1/2} r = \mathbf{0}$, so our updates are orthogonal to *W*.

 \Box

²This is known as the Frobenius inner product.

1.2 Rounding Algorithm

We can finally define the sub-isotropic rounding algorithm. Given an iterative relaxation procedure, we will initialize $x^{(0)}$ as the initial solution to the LP of interest. Then, until we reach an integral point, continuously:

- 1. Ask the iterative relaxation procedure for a subspace *W*(*k*) , and call [Theorem 1.4](#page-2-1) to obtain a PSD matrix *U* with the necessary conditions. Use [Fact 1.2](#page-1-0) to construct a (*a*, *η*) sub-isotropic distribution $\mu^{(k)}$ over vectors in ker $(W^{(k)})$.
- 2. Sample *v* from $\mu^{(k)}$, and set $y^{(k)} = \epsilon v$ where ϵ is the largest constant so that $x^{(k)} \pm \epsilon v \in [0,1]^n$ and $\epsilon \le \frac{1}{2n^{3/2}}$. Then set $x^{(k+1)} = x^{(k)} + y^{(k)}$.

The output obeys whatever guarantee the iterative relaxation algorithm had since we always move in the kernel of $W^{(k)}$. Secondly, since $\mathbb{E}\left[y^{(k)} \right]=0$ for all updates, $\mathbb{E}\left[x \right]=x_0.$ So, it remains to show [Theorem 1.4](#page-2-1) and to show that sub-isotropic updates imply concentration, which we will do in the next lecture. 3

Note that we will not analyze the running time of the algorithm, but it is not difficult to prove that it runs in expected polynomial time. See [\[Ban19\]](#page-3-0) for details.

References

- [Ban19] Nikhil Bansal. "On a generalization of iterated and randomized rounding". In: *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing*. STOC 2019. Phoenix, AZ, USA: Association for Computing Machinery, 2019, 1125–1135. isbn: 9781450367059. poi: [10.1145/3313276.3316313](https://doi.org/10.1145/3313276.3316313) (cit. on pp. [3,](#page-2-2) [4\)](#page-3-3).
- [BG17] Nikhil Bansal and Shashwat Garg. "Algorithmic discrepancy beyond partial coloring". In: *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing*. STOC 2017. Montreal, Canada: Association for Computing Machinery, 2017, 914–926. isbn: 9781450345286. poi: [10.1145/3055399.3055490](https://doi.org/10.1145/3055399.3055490) (cit. on p. [3\)](#page-2-2).

 3 While we started discussing martingales in this lecture, we will move this to the next lecture notes.